Enable javascript in your browser for better experience. Need to know to enable it?

÷ÈÓ°Ö±²¥

La informaci¨®n en esta p¨¢gina no se encuentra completamente disponible en tu idioma de preferencia. Muy pronto esperamos tenerla completamente disponible en otros idiomas. Para obtener informaci¨®n en tu idioma de preferencia, por favor descarga el PDF ²¹±ç³Ü¨ª.
?ltima actualizaci¨®n : Nov 30, 2017
NO EN LA EDICI?N ACTUAL
Este blip no est¨¢ en la edici¨®n actual del Radar. Si ha aparecido en una de las ¨²ltimas ediciones, es probable que siga siendo relevante. Si es m¨¢s antiguo, es posible que ya no sea relevante y que nuestra valoraci¨®n sea diferente hoy en d¨ªa. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender m¨¢s
Nov 2017
Evaluar ?

is a high-level interface in Python for building neural networks. Created by a Google engineer, Keras is open source and runs on top of either TensorFlow or . It provides an amazingly simple interface for creating powerful deep-learning algorithms to train on CPUs or GPUs. Keras is well designed with modularity, simplicity, and extensibility in mind. Unlike a library such as Caffe, Keras supports more general network architectures such as recurrent nets, making it overall more useful for text analysis, NLP and general machine learning. If computer vision, or any other specialized branch of machine learning, is your primary concern, Caffe may be a more appropriate choice. However, if you¡¯re looking to learn a simple yet powerful framework, Keras should be your first choice.

Mar 2017
Evaluar ?

is a high-level interface in Python for building neural networks. Created by a Google engineer, Keras is open source and runs on top of either TensorFlow or . It provides an amazingly simple interface for creating powerful deep-learning algorithms to train on CPUs or GPUs. Keras is well designed with modularity, simplicity, and extensibility in mind. Unlike a library such as Caffe, Keras supports more general network architectures such as recurrent nets, making it overall more useful for text analysis, NLP and general machine learning. If computer vision, or any other specialized branch of machine learning, is your primary concern, Caffe may be a more appropriate choice. However, if you're looking to learn a simple yet powerful framework, Keras should be your first choice.

Publicado : Mar 29, 2017

Suscr¨ªbete al bolet¨ªn informativo de Technology Radar

?

?

?

?

Suscr¨ªbete ahora

Visita nuestro archivo para leer los vol¨²menes anteriores