Enable javascript in your browser for better experience. Need to know to enable it?

÷ÈÓ°Ö±²¥

La informaci¨®n en esta p¨¢gina no se encuentra completamente disponible en tu idioma de preferencia. Muy pronto esperamos tenerla completamente disponible en otros idiomas. Para obtener informaci¨®n en tu idioma de preferencia, por favor descarga el PDF ²¹±ç³Ü¨ª.
?ltima actualizaci¨®n : Mar 16, 2012
NO EN LA EDICI?N ACTUAL
Este blip no est¨¢ en la edici¨®n actual del Radar. Si ha aparecido en una de las ¨²ltimas ediciones, es probable que siga siendo relevante. Si es m¨¢s antiguo, es posible que ya no sea relevante y que nuestra valoraci¨®n sea diferente hoy en d¨ªa. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender m¨¢s
Mar 2012
Adoptar ?
If the rate at which business is changing is an indicator of change in requirements, then the days of doing upfront database design are gone. Instead, projects should follow evolutionary database techniques and continue to change their database schemas as new requirements are implemented over the course of the project. Deployment of database changes should also be automated so that the application release that relies on those changes does not have to wait for manual deployment of the database changes. Automated database deployment ensures that application and database changes can be deployed automatically. Evolutionary database and automated database deployments ensure highly productive teams a path to continuous delivery.
Jul 2011
Adoptar ?
Jan 2011
Adoptar ?
The industry has seen significant changes to the way we use and store data over the past few years. Agile development practices have lead to greater emphasis on evolutionary database design, requiring new tools that support migration of schemas in line with changes to the domain model of an application. As storage space consistently becomes cheaper and data access speeds increase, many organizations are investigating the use of multiple schemas to hold data for different purposes, e.g. transactional and analysis schemas. Incremental data warehousing is becoming increasingly popular as the cost of moving data between a transactional data store and an analysis environment is less than the value of having access to near real-time reporting of critical business data.
Aug 2010
Adoptar ?
Apr 2010
Adoptar ?
Jan 2010
Probar ?
Publicado : Jan 11, 2010

Suscr¨ªbete al bolet¨ªn informativo de Technology Radar

?

?

?

?

Suscr¨ªbete ahora

Visita nuestro archivo para leer los vol¨²menes anteriores