Enable javascript in your browser for better experience. Need to know to enable it?

÷ÈÓ°Ö±²¥

La informaci¨®n en esta p¨¢gina no se encuentra completamente disponible en tu idioma de preferencia. Muy pronto esperamos tenerla completamente disponible en otros idiomas. Para obtener informaci¨®n en tu idioma de preferencia, por favor descarga el PDF ²¹±ç³Ü¨ª.
Publicado : Apr 24, 2019
NO EN LA EDICI?N ACTUAL
Este blip no est¨¢ en la edici¨®n actual del Radar. Si ha aparecido en una de las ¨²ltimas ediciones, es probable que siga siendo relevante. Si es m¨¢s antiguo, es posible que ya no sea relevante y que nuestra valoraci¨®n sea diferente hoy en d¨ªa. Desgraciadamente, no tenemos el ancho de banda necesario para revisar continuamente los anuncios de ediciones anteriores del Radar. Entender m¨¢s
Apr 2019
Evaluar ?

Data scientists and engineers often use libraries such as to perform ad hoc data analysis. Although expressive and powerful, these libraries have one critical limitation: they only work on a single CPU and don't provide horizontal scalability for large data sets. , however, includes a lightweight, high-performance scheduler that can scale from a laptop to a cluster of machines. And because it works with , pandas and Scikit-learn, Dask looks promising for further assessment.

Suscr¨ªbete al bolet¨ªn informativo de Technology Radar

?

?

?

?

Suscr¨ªbete ahora

Visita nuestro archivo para leer los vol¨²menes anteriores