As informa??es desta p¨¢gina n?o est?o completamente dispon¨ªveis no seu idioma de escolha. Esperamos disponibiliza-las integralmente em outros idiomas em breve. Para ter acesso ¨¤s informa??es no idioma de sua prefer¨ºncia, fa?a o download do PDF ²¹±ç³Ü¨ª.
Atualizado em : Jul 30, 2011
N?O ENTROU NA EDI??O ATUAL
Este blip n?o est¨¢ na edi??o atual do Radar. Se esteve em uma das ¨²ltimas edi??es, ¨¦ prov¨¢vel que ainda seja relevante. Se o blip for mais antigo, pode n?o ser mais relevante e nossa avalia??o pode ser diferente hoje. Infelizmente, n?o conseguimos revisar continuamente todos os blips de edi??es anteriores do Radar.
Saiba mais
Jul 2011
Experimente
Like iterative software development, there is lot of value to be gained by delivering data warehousing projects using iterative techniques. Iterative data warehousing techniques allow the end users of the data warehouse to determine what reports they want and the ETL developers and data modelers to deliver those features without wasting time with data modeling and ETL jobs that do not provide immediate value to the business.
Aug 2010
Avalie
The industry has seen significant changes to the way we use and store data over the past few years. Agile development practices have lead to greater emphasis on evolutionary database design, requiring new tools that support migration of schemas in line with changes to the domain model of an application. As storage space consistently becomes cheaper and data access speeds increase, many organizations are investigating the use of multiple schemas to hold data for different purposes, e.g. transactional and analysis schemas. Incremental data warehousing is becoming increasingly popular as the cost of moving data between a transactional data store and an analysis environment is less than the value of having access to near real-time reporting of critical business data.
Apr 2010
Avalie
Jan 2010
Avalie
Publicado : Jan 11, 2010

